Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Synthesis of 2-{[5-(aralkyl/aryl)-1,3,4-oxadiazol-2-yl]sulfanyl}-N-(4-methyl-1,3-thiazol-2-yl)acetamides: Novel bi-heterocycles as potential therapeutic agents

Muhammad S Ramzan1, Muhammad A Abbasi1 , Aziz-ur-Rehman 1, Sabahat Z Siddiqui1, Syed AA Shah2,3, Muhammad Ashraf4, Muhammad A Lodhi5, Farman A Khan5, Bushra Mirza6

1Department of Chemistry, Government College University, Lahore-54000, Pakistan; 2Faculty of Pharmacy; 3Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Level 9, FF3, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; 4Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100; 5Department of Biochemistry, Abdul Wali Khan University, Mardan-23200; 6Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.

For correspondence:-  Muhammad Abbasi   Email: abbasi@gcu.edu.pk

Accepted: 19 April 2018        Published: 28 May 2018

Citation: Ramzan MS, Abbasi MA, A, Siddiqui SZ, Shah SA, Ashraf M, et al. Synthesis of 2-{[5-(aralkyl/aryl)-1,3,4-oxadiazol-2-yl]sulfanyl}-N-(4-methyl-1,3-thiazol-2-yl)acetamides: Novel bi-heterocycles as potential therapeutic agents. Trop J Pharm Res 2018; 17(5):913-926 doi: 10.4314/tjpr.v17i5.23

© 2018 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To evaluate the therapeutic potential of new bi-heterocycles containing a 1,3-thiazole and 1,3,4-oxadiazole in the skeleton against Alzheimer's disease and diabetes, supported by in-silico study.
Methods: The synthesis was initiated by the reaction of 4-methyl-1,3-thiazol-2-amine (1) with bromoacetyl bromide (2) in aqueous basic medium to obtain an electrophile,2-bromo-N-(4-methyl-1,3-thiazol-2-yl)acetamide (3). In parallel reactions, a series of carboxylic acids, 4a-r, were converted through a sequence of three steps, into respective 1,3,4-oxadiazole heterocyclic cores, 7a-r, to utilize as nucleophiles. Finally, the designed molecules, 8a-r, were synthesized by coupling 7a-r individually with 3 in an aprotic polar solvent. The structures of these bi-heterocycles were elucidated by infrared (IR), electron ionization-mass spectrometry (EI-MS), proton nuclear magnetic resonance (1H-NMR) and carbon nuclear magnetic resonance (13C-NMR). To evaluate their enzyme inhibitory potential, 8a-r were screened against acetylcholinesterase (AChE), but brine shrimp lethality bioassay.
Results: The most active compound against AChE was 8l with half-maximal inhibitory concentration (IC50) of 17.25 ± 0.07 µM. Against BChE, the highest inhibitory effect was shown by 8k (56.23 ± 0.09 µM). Compound 8f (161.26 ± 0.23μM) was recognized as a fairly good inhibitor of urease. In view of its inhibition of α-glucosidase, 8o (57.35 ± 0.17μM) was considered a potential therapeutic agent.
Conclusion: The results indicate that some of the synthesized products with low toxicity exhibit  notable enzyme inhibitory activity against selected enzymes compared with the reference drug, and therefore, are of potential therapeutic interest

Keywords: 4-Methyl-1,3-thiazol-2-amine,1,3,4-Oxadiazole, Cholinesterases, ^5;-Glucosidase, Urease, Brine shrimp

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates